

aa DNA.Caa a a.

"A [™]a

a a a a уa y .la a a a y RNA y a la III.

- k,≉ Taya
- a yaa
 - aa.

DNA a a Y a y a а y DNA а

• i.,**.*,** Ta DNA a a a () (a) a

SMC complexes in gene expression

Since complexes in gene expression

Va a	ار معز	، ۲	Η,	a [*]
аa				8
	, y	аy		
			а	
			Ŷ	
		a.		
1.1)		
E		a	, a a	
E	i	а	аa	

b A elevice for c 🗯 a, (-2, -3) a, (-2) ed IGF2 H19 o,

Cohe in in imm ne-cell differen ia ion.

	,		
а			
y	а		y
- + + x	4 5		
A a			. y
а	a a		y
yа	а		
5.57	÷.,		
Lа	•	а	
а	а		
Аa			
a a			а
yа	а		

P∰ e .cS, a.e

AE assembly*† and DSB formation†

CO recombina

A a a a ya a a a a a ya a a a a . ;•, ; A y a a a

Conden in loading. (BOX 1).

- 12. 12. 13. 15. 16. 17. 252 525 55 187 200, 150 0 6 234, 4400. 2 2.0047, 2 10 (190) 101 (204) 1007, 300, 160 (235), 17. 200, 160 (200), 17. 200, 17.
- regulatory functions of CTCF. E = B J. 28, 77 (200). 9 10.
- 11.

30.